Venture Challenge Alumnus Bi/ond awarded EUROSTARS to develop a compact Organ-on-Chip system for the heart

Delft, Leiden and Paris – October 1, 2020 – BIOND Solutions B.V. (Bi/ond), Fluigent S.A.S. and the Department of Anatomy and Embryology, Leiden University Medical Center (LUMC) joined forces to develop a compact Organ-on-Chip system for the heart. The two companies will deliver the first-ever Organ-on-Chip (OoC) system that can keep complex 3D tissue models alive (through a vascularised channel, including microfluidic flow) while providing mechanical stimulation. The 1.4mn euro CompactOoC-3D project has been funded by the EU under the EUROSTARS program. EUROSTARS supports the development of innovative products that impact people`s lives around the world. The grant has joint contributions from the Netherlands Enterprise Agency (RVO) and Bpifrance. The compact OoC system will integrate the Bi/ond OoC technology with the Fluigent perfusion system and it will be qualified by LUMC for 3D cardiac tissue models based on cardiomyocytes from human induced pluripotent stem cells. This innovative solution will save biologists time and costs, it is compact and will be usable with minimal training. Presently, this type of study is limited by the short time that 3D tissues cultured in vitro are viable. “We want to radically improve the quality of research on 3D tissues models by developing a compact Organ-on-Chip solution combining organ-vessel interaction and ease of use. We are delighted to run this project with LUMC and Fluigent”, states Dr. Cinzia Silvestri, CEO and co-founder of Bi/ond. The Bi/ond – Fluigent system will mimic the physiological conditions of the human body by providing mechanical stimulation experienced by cells in vivo, nutrients to the micro-tissue through a blood vessel, or mimicking the immune system (through delivery of fluids and/or immune cells in the microchannel system). The system will offer cell co-culture support to replicate tissue-tissue interfaces. “The system that will emerge from this project will allow us to keep our complex 3D models in culture for longer periods of time. This is not just an incremental improvement but it will allow us to explore new types of biological questions such as what happens to the heart during long-term exposure to drugs used for example in chemotherapy, states Berend van Meer, researcher and project coordinator of the LUMC. The end-goal of the project is to develop and qualify an Organ-on-Chip system suitable for complex 3D tissue models, compact enough to fit into a standard incubator tray and usable by biologists accustomed to in vitro cultures. “Enabling the development of technologies that have the potential to change and accelerate science research is at the core of Fluigent. This collaboration is a unique opportunity for Fluigent to make our premium instruments initially designed for experts in microfluidics accessible to biologists. Our high-performance systems combined with innovative 3D cellular models will allow to address questions that could not be tackled before due to technological limitations. Organ-on-chip will initiate a major shift in cell culture and Fluigent is thrilled to engage in it.” states Dr. France Hamber, CEO of Fluigent. The collaboration between Bi/ond, Fluigent and LUMC combines cutting-edge technologies and world-leading science in a consortium that will unlock the full potential of OoC technology, and enable biologists to speed up their research by adopting a compact easy to use system.
Venture Challenge Alumnus Bi/ond awarded EUROSTARS to develop a compact Organ-on-Chip system for the heart

‹ News overview